il
OH
Tl
il

2l
i

& {F (2003-)

~\\
-—

-
271,

pR1ZEX jason@nlplab.cc

BhZ% : ER{E = isaac@nlplab.cc
HIZZ winnie@nlplab.cc

FRTZ4UL - https://1ms.nthu.edu.tw/course.php?courseID=38752
2019 0917 BEHM 15:30 RFEMER BERE 323 iMac HE

mailto:jason@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:jason@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:vincent.han@nlplab.cc

Syllabus

MEERES BRI AMMENERENRKDS » UkE
ket o e

/

7ELT T\

SiE—EEF-EE

- HERMTHEHRS=EER (8930~6077%F) » T HRY
IS BRI EE

» BREPEBTLAEHE SR ER KB

]

SN

e Assignments

» WERERRGERdemoia BN E » Bzl LEBE
ILMS » B ERIFAS RAVIERETE &SRR DX

* Term Project
* EXEEESE > fJMRLRE » BERIIT
« HAh[E2 » daE(i=E

o) o) o o) o) o) o) o o) o) Fl

IEBNZK

C=X A1)
e
tRE
BE =
S
RE

LIARRS (R

Tl

2XZE ACL2010 8

Trend Micro

CMU > BIHAZRERRE » 353R7E ACL 2012
Yahoo!ZFEE » CoNLL 2014 $EtH SR on &
Pinkoi, 257 NA ACL 2015

Google » 2XZRTE NAACL2015

PRGN

TN 70

B
=

1K) REAPAEEE 5 FRZXIINTCIR
RS EBRE COLING, IJCNLP, PACLIC
HZS NIIE & ACL 2019

21&E 5 %15 ACL 2020

Why Python?
* 523 EH BRIHERR
« BIRGRERIE 45T
o A)iEZ PRI —AEBLER
« 27
o 114
* Al, NLP AR B £

#1117 Python B9 =}
 HE)= : python (}§<7! * IDLE)
o #itZR= : python <filename>

e 5L HIZI : python -c "<text>"
o et R H &) : python -i <flename>
* BIEZFH1T (CGI)

o SERTEI\ ~ &R ~ Ei ipython notebook

FA{lF22 Python— 1172173 {TEf§ &

*—17

—

* M1T -
*317:
*4 17 :
* 517 :
*6 17 :

* 717 :

D FFNU AR EL - o AEF =B

{&

~

fril
o

oo
(==

i

gl

J1E4H ~ TEFRRREN ~ 0L PR 2]

o

PHEL > EEFEMEDER TV
FREER > EFRBEFIHRERE

HORE—H @R ~ &R

B \EXE sTHEHIRE - 5948

EEHFIaRR SR ERES R

\»

At

o

117 - [FIUANERE > DEEF R

>>> 'Colorless green ideas sleep furiously.'.split()
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

Same as using the built-in print function:
>>> print('Colorless green ideas sleep furiously.'.split())
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

2 17 : 124 ~ EFR + U EY

S Python
>>> 'Colorless green ideas sleep furiously.'.split()
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

Same as using the built-in print function:
>>> print('Colorless green ideas sleep furiously.'.split())
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

317 : ERME > DIEFHRoEE
>>> def splits(text, L=10):

>>> return [(text[:i+1], text[i+l:])
>>> for i in range(min(len(text), L))]

Run the function:

S python -i my.py

>>> from pprint import pprint

>>> pprint(splits('colorlessgreenideassleepfuriously.'))
[('c', 'olorlessgreenideassleepfuriously.'),
('co', 'lorlessgreenideassleepfuriously.'),
('col', 'orlessgreenideassleepfuriously.'),
('colo’', 'rlessgreenideassleepfuriously.'),
('color', 'lessgreenideassleepfuriously.'),
('colorl', 'essgreenideassleepfuriously.'),
('colorle', 'ssgreenideassleepfuriously.'),
('colorles', 'sgreenideassleepfuriously.'),
('colorless', 'greenideassleepfuriously.'),
('colorlessqg', 'reenideassleepfuriously.')]

4 17 : iBIER > E1 GO

N = 1024908267229 ## Size of Google Web 1T Dataset
word count = [line.split('\t') for line in open('count 1lw.txt', 'r')]

Pdist = dict([(word, float(count)/N) for word, count in word count])

def Pw(word): return Pdist[word] if word in Pdist else 10./10**len(word)/N

Run the function:
>>> pprint [(w, Pw(w)) for w in words('Colorless green ideas sleep
furiously.')]
[('colorless', 5.0e-07),
('green', 0.00011),
('ideas', 6.6e-05),
('sleep', 2.9e-05),
(' furiously', 4.4e-07)
('.', 9.76e-13)]
>>> print(map(Pw, words('Colorless green ideas sleep furiously.')))

[5.0e-07, 0.00011, 6.6e-05, 2.9e-05, 4.4e-07, 9.76e-13]

) ‘F‘ =+ 2 — sﬁ
51T : W ~ =8 ~ FOIE ~ INEE
@memoize
def segment(text):

if not text: return []

candidates = ([first]t+segment(rem) for first,rem in splits(text))
return max(candidates, key=lambda x: product(P(w) for w in X))

c

Run the function:

>>> print(segment('colorlessgreenideassleepfuriously.'))

['colorless', 'green', 'ideas', 'sleep', 'furiously', '.']

>>> print(' '.join(segment('colorlessgreenideassleepfuriously.')))
'colorless green ideas sleep furiously .’

class memoize:
def init_ (self, fn):
self.function = fn
self .memodict = {}

def call (self, *args):
if args not in self.memodict:
self.memodict[args] = self.function(*args)
return self.memodict[args]

6 1T : NLP A9 Hello World—wc

import re, collections

def words(text):

return re.findall(r'\w+', text.lower())

word count =

collections.Counter (words(open('big.txt').read()))

def P(word, N = sum(word count.values())):

return word count[word]/N

$ python -i 6.py
>>> pprint(map(P, words('speling spelling speeling')))

[('speling', 0.0), ('spelling', 3.59e-06), ('speeling',

0.0)]

717 ' =%

letters = 'abcdefghijklmnopgrstuvwxyz'

def editsl(word):

L,

L,

L,

R

R

R

R

splits = [(word[:1i], word[i:]) for i in
deletes = [L + R[1:] for
transposes = [L + R[1] + R[0] + R[2:] for
replaces = [L + c + R[1:] for
inserts = [L+c+R for

L,

A EEIEEES

At

(i

range(len(word) + 1)]

in

in

in

in

splits

splits

splits

splits

return set(deletes + transposes + replaces + inserts)

if R]

if len(R)>1]

if R for c in letters]

for ¢ in letters]

71T

>>> pprint (

[(L, ¢, R) for L, R in splits for c in

[(Il, Il|’ lspelingl),

('S', lll,
('sp', '1°,

('Spe', lll,

'peling’),

'eling'),
'ling'),

('spel', '1', 'ing'),

(lspelil’ lll, lngl),

('spelin’,
('speling’,
>>> pprint(
['lspeling’,
'slpeling’',
'spleling’,
'spelling’,
'spelling’,
'spelilng’,
'spelinlg’,
'spelingl']

IlI’ Igl),

lll, ll)]
[L + ¢ + R for L, R in splits for c¢ in

lll])

171)

71T

>>> pprint(list(editsl('speling')))

['spelinx', 'spebling', 'spelinf' ...]

>>> pprint(list(map(lambda x: (x, P(x)), list(editsl('speling'))))

[('spjling', 0.0),

('bspeling', 0.0),

('spelint', 0.0),

('spelling', 3.5e-6),

>>> print(list(filter(lambda x: P(x) != 0.0, editsl('speling')))

['spelling’]

>>> print(max(editsl('speling'), key=P))

spelling

)

8 1THY Python £

def

(1)
(2)
(3)

(4)
(3)

def

def

correction(WORD):

if P(WORD) > 0: return WORD
Generate candidates Cl with one WORD away from word
If there exists a candidate x in Cl, P(x) > O:
return argmax(x) P(x) for x in Cl
Generate candidates C2: one edit away from any ¢ in C1l
If there exists a candidate x in C2, P(x) > O:
return argmax P(x) for x in C2

correction(word):

return max(candidates(word), key=P)

candidates(word):

return (known([word]) or known(editsl(word)) or known(edits2(word)) or

[word])

def

def

known (words) :

return set(w for w in words if w in WORDS)
edits2(word):

return (e2 for el in editsl(word) for e2 in editsl(el))

$ python -i 8.py

>>>

print('speling -->', correction('speling'))

speling --> spelling

9 17 : HlE—TF

def unit tests():

>>>

assert
assert

assert

assert
assert

return

correction('speling') ==

correction('korrectud’)

Counter (words('This is

Counter({'123': 1, 'a
P('quintessential') ==
0.07 < P('the') < 0.08

'unit_ tests pass'

'spelling’
== 'corrected'
a test. 123;
2, 'is': 2, 'test'
0

insert

replace 2

A TEST this is.'

2,

))

'this'

==
2}))

10 1789 Python 2=

def spelltest(tests): # Run correction(wrong) on (right, wrong) pairs

good, unknown = 0, O
for right, wrong in tests:
w = correction(wrong)
if w == right: good +=1
else: unknown += (right not in WORDS)
n = len(tests)
print('{:.0%} of {} correct ({:.0%} unknown) ‘\

.format(good / n, n, unknown / n))

if name == main ':

spelltest(Testset(open(' 'spell-testsetl.txt')))

$ python -i 10.py
>>> spelltest(Testset(open('spell-testsetl.txt')))

21 17 : spell.py by Peter Norvig

import re
from collections import Counter

def words(text): return re.findall(r'\w+', text.lower())
WORDS = Counter (words(open('big.txt').read()))

def P(word, N=sum(WORDS.values())):
"Probability of “word™."
return WORDS[word] / N

def correction(word):
"Most probable spelling correction for word."
return max(candidates(word), key=P)

def candidates(word):
"Generate possible spelling corrections for word."
return (known([word]) or known(editsl(word)) or known(edits2(word)) or [word])

def known(words):
"The subset of “words™ that appear in the dictionary of WORDS."
return set(w for w in words if w in WORDS)

def editsl(word):
"All edits that are one edit away from “word™."

letters = 'abcdefghijklmnopgrstuvwxyz'

splits = [(word[:1], word[i:]) for i in range(len(word) + 1)]

deletes = [L + R[1:] for L, R in splits if R]

transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]

replaces = [L + ¢c + R[1:] for L, R in splits if R for c in letters]
inserts = [L +c¢c + R for L, R in splits for c in letters]

return set(deletes + transposes + replaces + inserts)

def edits2(word):
"All edits that are two edits away from “word™."
return (e2 for el in editsl(word) for e2 in editsl(el))

AREFE

e #£7¢ http://norvig.com/spell- correct.html F2z%
c BA—T) » RIE[RATER - MUK NIIEER

e Fusion errors (e.g. “taketo” — “take to”)

e Multi-token errors (e.g. “mor efun” — “more
fun”)

e Fusion errors (e.g. “with out” — “without”)

2F 3R (FT T &)

e How to think like a Computer Scientist -
iIntroductory programming book that comes in
Python and Java version. by Downey, Elkner,
and Meyers

e Dive Into Python - free Python book for
experienced programmers. By Mark Pilgrim

e Thinking In Python - for intermediate Python
programmers. By Bruce Eckel

e Python Text Processing with NLTK 2.0
Cookbook. By Jacob Perkins

