
⾃自然語⾔言處理理實作 (2003-)

張俊盛 jason@nlplab.cc

助教：郭俊豪 isaac@nlplab.cc 
 許瑋芩 winnie@nlplab.cc

課程網站：https://lms.nthu.edu.tw/course.php?courseID=38752

2019 0917 每星期四 15:30 到作業做出來來 資電館 323 iMac 教室

mailto:jason@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:jason@nlplab.cc
mailto:vincent.han@nlplab.cc
mailto:vincent.han@nlplab.cc

課程說明

2

進⾏行行⽅方式

3

• Term Project

• 作業成績優秀者，可以提出規劃，審查後執⾏行行

• 其他同學，繼續做題⽬目
4

歷屆助教
◦ 吳鑑城 發表 ACL 2010 論⽂文
◦ 粘⼦子弈 Trend Micro
◦ 張⾄至 CMU，創期末專題，發表在 ACL 2012
◦ ⾼高定慧 Yahoo!奇摩，CoNLL 2014改錯世界亞軍
◦ 顏孜羲 Pinkoi, 發表 NA ACL 2015
◦ 張竟 Google，發表在 NAACL2015
◦ 劉劉郁蘭蘭 (兩兩次) 京都⼤大學實習，競逐於NTCIR
◦ 陳志杰 投稿長勝軍：COLING, IJCNLP, PACLIC
◦ 韓⽂文彬 ⽇日本 NII實習 ACL 2019
◦ 蔡仲庭 台積電，投稿 ACL 2020

Why Python?
•乾淨直覺的排版

•動態遞迴的資料結構

•不拘泥受限於⼀一種典範

•程序

•函數

•物件

• AI, NLP 研究的⾸首選6

執⾏行行 Python 的⽅方式
•互動式： python (指令列列、IDLE)

•批次式： python <filename>

•指令直接式：python -c "<text>"

•先批次再互動：python -i <filename>

•瀏覽器執⾏行行 (CGI)

•混合程式、解說、輸出 ipython notebook

7

⽤用例例⼦子學 Python─ 1⾏行行2⾏行行3 ⾏行行很簡單
•⼀一⾏行行：呼叫內建函數，分解字串串

•兩兩⾏行行：使⽤用模組、定義函數、呼叫函數

• 3 ⾏行行：定義函數，回傳字串串的所有分解⽅方式

• 4 ⾏行行：讀單字次數檔案，定義單字機率函數

• 5 ⾏行行：遞迴函數的函數─⽤用@裝扮、加速

• 6 ⾏行行：讀入檔案庫，計算詞的次數、詞頻

• 7 ⾏行行：產⽣生拼字錯誤的各種修正候選答案8

1 ⾏行行：呼叫內建函數，分解字串串
$ Python
>>> 'Colorless green ideas sleep furiously.'.split()
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

Same as using the built-in print function:
>>> print('Colorless green ideas sleep furiously.'.split())
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

9

2 ⾏行行：模組、定義＋呼叫函數

10

$ Python
>>> 'Colorless green ideas sleep furiously.'.split()
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

Same as using the built-in print function:
>>> print('Colorless green ideas sleep furiously.'.split())
['Colorless', 'green', 'ideas', 'sleep', 'furiously.']

3 ⾏行行：定義函數，回傳字串串分解
>>> def splits(text, L=10):
>>> return [(text[:i+1], text[i+1:])
>>> for i in range(min(len(text), L))]

Run the function:
$ python -i my.py
>>> from pprint import pprint
>>> pprint(splits('colorlessgreenideassleepfuriously.'))
[('c', 'olorlessgreenideassleepfuriously.'),
 ('co', 'lorlessgreenideassleepfuriously.'),
 ('col', 'orlessgreenideassleepfuriously.'),
 ('colo', 'rlessgreenideassleepfuriously.'),
 ('color', 'lessgreenideassleepfuriously.'),
 ('colorl', 'essgreenideassleepfuriously.'),
 ('colorle', 'ssgreenideassleepfuriously.'),
 ('colorles', 'sgreenideassleepfuriously.'),
 ('colorless', 'greenideassleepfuriously.'),
 ('colorlessg', 'reenideassleepfuriously.')]

11

4 ⾏行行：讀檔案，建立「詞典」

12

N = 1024908267229 ## Size of Google Web 1T Dataset

word_count = [line.split('\t') for line in open('count_1w.txt', 'r')]

Pdist = dict([(word, float(count)/N) for word, count in word_count])

def Pw(word): return Pdist[word] if word in Pdist else 10./10**len(word)/N

Run the function:

>>> pprint [(w, Pw(w)) for w in words('Colorless green ideas sleep

furiously.')]

[('colorless', 5.0e-07),

 ('green', 0.00011),

 ('ideas', 6.6e-05),

 ('sleep', 2.9e-05),

 ('furiously', 4.4e-07)

 ('.', 9.76e-13)]

>>> print(map(Pw, words('Colorless green ideas sleep furiously.')))

[5.0e-07, 0.00011, 6.6e-05, 2.9e-05, 4.4e-07, 9.76e-13]

5 ⾏行行：遞迴、裝飾、記憶、加速

13

@memoize
def segment(text):
 if not text: return []
 candidates = ([first]+segment(rem) for first,rem in splits(text))
 return max(candidates, key=lambda x: product(P(w) for w in x))

Run the function:
>>> print(segment('colorlessgreenideassleepfuriously.'))
['colorless', 'green', 'ideas', 'sleep', 'furiously', '.']
>>> print(' '.join(segment('colorlessgreenideassleepfuriously.')))
'colorless green ideas sleep furiously .’

class memoize:
 def __init__(self, fn):
 self.function = fn
 self.memodict = {}

 def __call__(self, *args):
 if args not in self.memodict:

 self.memodict[args] = self.function(*args)
 return self.memodict[args]

6 ⾏行行：NLP 的 Hello World—wc
import re, collections

def words(text):

 return re.findall(r'\w+', text.lower())

word_count =

collections.Counter(words(open('big.txt').read()))

def P(word, N = sum(word_count.values())):

 return word_count[word]/N

$ python -i 6.py

>>> pprint(map(P, words('speling spelling speeling')))

[('speling', 0.0), ('spelling', 3.59e-06), ('speeling', 0.0)]

14

7 ⾏行行：拼字錯誤各種修正候選答案

15

letters = 'abcdefghijklmnopqrstuvwxyz'

def edits1(word):

 splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

 deletes = [L + R[1:] for L, R in splits if R]

 transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]

 replaces = [L + c + R[1:] for L, R in splits if R for c in letters]

 inserts = [L + c + R for L, R in splits for c in letters]

 return set(deletes + transposes + replaces + inserts)

7 ⾏行行

16

>>> pprint([(L, c, R) for L, R in splits for c in 'l'])
[('', 'l', 'speling'),
 ('s', 'l', 'peling'),
 ('sp', 'l', 'eling'),
 ('spe', 'l', 'ling'),
 ('spel', 'l', 'ing'),
 ('speli', 'l', 'ng'),
 ('spelin', 'l', 'g'),
 ('speling', 'l', '')]
>>> pprint([L + c + R for L, R in splits for c in 'l'])
['lspeling',
 'slpeling',
 'spleling',
 'spelling',
 'spelling',
 'spelilng',
 'spelinlg',
 'spelingl']

7 ⾏行行

17

>>> pprint(list(edits1('speling')))

['spelinx', 'spebling', 'spelinf' ...]

>>> pprint(list(map(lambda x: (x, P(x)), list(edits1('speling')))))

[('spjling', 0.0),

 ('bspeling', 0.0),

 ('spelint', 0.0), ...

 ('spelling', 3.5e-6), ...

>>> print(list(filter(lambda x: P(x) != 0.0, edits1('speling'))))

['spelling']

>>> print(max(edits1('speling'), key=P))

spelling

8 ⾏行行的 Python 程式
def correction(WORD):

(1) if P(WORD) > 0: return WORD
(2) Generate candidates C1 with one WORD away from word
(3) If there exists a candidate x in C1, P(x) > 0:
 return argmax(x) P(x) for x in C1
(4) Generate candidates C2: one edit away from any c in C1
(5) If there exists a candidate x in C2, P(x) > 0:
 return argmax P(x) for x in C2

def correction(word):
 return max(candidates(word), key=P)
def candidates(word):
 return (known([word]) or known(edits1(word)) or known(edits2(word)) or
[word])
def known(words):
 return set(w for w in words if w in WORDS)
def edits2(word):
 return (e2 for e1 in edits1(word) for e2 in edits1(e1))

$ python -i 8.py
>>> print('speling -->', correction('speling'))
speling --> spelling

18

9 ⾏行行：測試⼀一下
def unit_tests():

 assert correction('speling') == 'spelling' # insert

 assert correction('korrectud') == 'corrected' # replace 2

 assert Counter(words('This is a test. 123; A TEST this is.')) == (

 Counter({'123': 1, 'a': 2, 'is': 2, 'test': 2, 'this': 2}))

 assert P('quintessential') == 0

 assert 0.07 < P('the') < 0.08

 return 'unit_tests pass'

>>> ...

19

10 ⾏行行的 Python 程式
def spelltest(tests): # Run correction(wrong) on (right, wrong) pairs
 good, unknown = 0, 0
 for right, wrong in tests:
 w = correction(wrong)
 if w == right: good += 1
 else: unknown += (right not in WORDS)
 n = len(tests)
 print('{:.0%} of {} correct ({:.0%} unknown) ‘\  
 .format(good / n, n, unknown / n))

if __name__ == '__main__':
 spelltest(Testset(open('spell-testset1.txt')))

$ python -i 10.py
>>> spelltest(Testset(open('spell-testset1.txt')))
...
...

20

21 ⾏行行：spell.py by Peter Norvig

21

本次作業
• 擴充 http://norvig.com/spell- correct.html 程式

• 讀入⼀一句句，處理理原有錯誤，以及下列列錯誤：

• Fusion errors (e.g. “taketo” → “take to”)

• Multi-token errors (e.g. “mor efun” → “more
fun”)

• Fusion errors (e.g. “with out” → “without”)

22

參參考⽂文獻 (可下載)
• How to think like a Computer Scientist -

introductory programming book that comes in
Python and Java version. by Downey, Elkner,
and Meyers

• Dive Into Python - free Python book for
experienced programmers. By Mark Pilgrim

• Thinking In Python - for intermediate Python
programmers. By Bruce Eckel

• Python Text Processing with NLTK 2.0
Cookbook. By Jacob Perkins

23

