
NLP with Deep Learning



Introduction to Neural Networks

Building Blocks: Neurons

Neurons - basic unit of a neural network

- A neuron takes inputs, does some math with them and produces one output



Introduction to Neural Networks

Three things happening here:

1. First, each input is multiplied by 

a weight: 

x1 →x1*w1

x2 →x2*w2



Introduction to Neural Networks

Three things happening here:

2. Next, all the weighted inputs are 

added together with a bias b:

(x1*w1)+(x2*w2)+b



Introduction to Neural Networks

Three things happening here:

3. Finally, the sum is passed 

through an activation function:

y= f((x1*w1)+(x2*w2)+b)



Introduction to Neural Networks

● The activation function is used to turn an unbounded input into an output that 
has a nice, predictable form.

● A commonly used activation function is the sigmoid function:



Check this out: Neural Network from Scratch!

Neural Network from Scratch by Victor Zhou

https://github.com/vzhou842/neural-network-from-scratch/blob/master/network.py


Introduction to Neural Networks

● Feedforward neural network
○ The information moves only in one direction - forward - from the input nodes, through the 

hidden nodes (if there are any) and to the output nodes

● Back Propagation
○ Practice of fine-tuning weights of a neural net based on the error rate (i.e. loss) obtained 

in the previous epoch (i.e. iteration)
○ Proper tuning of weights ensures lower error rates, making the model reliable by 

increasing its generalization



Important Reminder

● A key step to ensuring that your model obtains reasonable performance on 
the task at hand is to perform preprocessing on your data

The unbalanced classes create a problem due to two main reasons:

1. We don’t get optimized results for the class which is unbalanced in real time 
as the model/algorithm never gets sufficient look at the underlying class

2. It creates a problem of making a validation or test sample as it’s difficult to 
have representation across classes in case number of observation for few 
classes is extremely less



Handling Unbalanced Datasets

● Undersampling
● Oversampling
● SMOTE



Loss Function

● Method of evaluating how well your algorithm models your dataset (determine the 
error (aka “the loss”) between the output of our algorithms and the given target value)

● In the context of an optimization algorithm, the function used to evaluate a candidate 
solution (i.e. a set of weights) is referred to as the objective function (we want to 
know the minimum/maximum value of this objective function)

● Typically, with neural networks, we seek to minimize the error. As such, the objective 
function is often referred to as a cost function or a loss function and the value 
calculated by the loss function is referred to as simply “loss.”



Language Modeling

● You can also think of a Language Model as a system that assigns a 
probability to a piece of text

●  For example, if we have some text , then the probability of this text 
(according to the Language Model) is:



Language Modeling

● Useful for speech and translation systems when determining whether a 

word sequence is an accurate translation of an input sentence. 

● e.g. {I have, I had, I has, me have, me had} 

○ Then  scores them to identify the most likely translation sequence

○ In machine translation, the model chooses the best word ordering for 

an input phrase by assigning a goodness score to each output word 

sequence alternative



Language Modeling

● To do so, the model may choose between different word ordering or word choice 
alternatives

● It would achieve this objective by running all word sequence candidates through a 
probability function that assigns each a score

● The sequence with the highest score is the output of the translation

● For example, 
○  "the cat is small" has higher score vs  "small the is cat”
○ higher score to "walking home after school" compared to "walking house after 

school”



We Use Language Models Everyday!



n-gram Language Models

the students opened their ______

• Question: How to learn a Language Model?

• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.

unigrams: “the”, “students”, “opened”, ”their”

bigrams: “the students”, “students opened”, “opened their”

trigrams: “the students opened”, “students opened their”

four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to

predict next word.



n-gram Language Models

● Consider the sentence:

○ "As the proctor started the clock, the students opened their __________".

○  If the window only conditions on the previous three words "the students

opened their", the probabilities calculated based on the corpus may suggest that the 

next word be "books" 

● If n had been large enough to include the "proctor" context, the probability 

might have suggested "exam".



Evaluating Language Models

● The standard evaluation metric for Language Models is perplexity. (Lower 
perplexity is better) 



Disadvantages of n-gram Language Models

1. Sparsity problems with n-gram Language Models

● Smoothing and backoff (need to do these if words do not appear together 
in the corpus)



Smoothing and Backoff



Disadvantages of n-gram Language Models

2. Storage problems

As the corpus size increases, the model size increases as well



Window-Based Neural Model

This model learns a distributed representation of

words,  along with the probability function for word 

sequences expressed in terms of these

representations



Window-Based Neural Model

This model learns a distributed representation of

words,  along with the probability function for word 

sequences expressed in terms of these

representations



Recurrent Neural Network (RNN)

RNN Advantages:

• Can process any length input

• Computation for step t can (in theory) use 
information from many steps back

• Model size doesn’t increase for longer input 
context

• Same weights applied on every timestep, so there 
is symmetry in how inputs are processed.



Vanishing Gradient & Gradient Explosion Problems

Recall:  the goal of a RNN implementation is to enable propagating context 
information through faraway time-steps.

Sentence 1:

"Jane walked into the room. John walked in too. Jane said hi to ___"

Sentence 2:

"Jane walked into the room. John walked in too. It was late in the day, and everyone 
was walking home after a long day at work. Jane said hi to ___"



Vanishing Gradient & Gradient Explosion Problems

● It turns out RNNs are more likely to correctly predict the blank spot in Sentence 1 
than in Sentence 2. 

● This is because during the back-propagation phase, the contribution of gradient 
values gradually vanishes as they propagate to earlier timesteps

● Thus, for long sentences, the probability that "John" would be recognized as the 
next word reduces with the size of the context.



Solving Vanishing Gradient Problems

1. Initialize a random weight, start off from an identity matrix initialization.

2. Use the Rectified Linear Units (ReLU) instead of the sigmoid function. The 
derivative for the ReLU is either 0 or 1 . This way, gradients would flow through 
the neurons whose derivative is 1 without getting attenuated while propagating 
back through time-steps.



Deep Bidirectional RNNs

● This network maintains two hidden layers, 
one for the left-to-right propagation and 
another for the right-to-left propagation.

● To maintain two hidden layers at any time, 
this network consumes twice as much 
memory space for its weight and bias 
parameters.



Gated Recurrent Units (GRU)

● RNNs have been found to perform better with the use of more complex units for 
activation

● The use of a gated activation function modifies the RNN architecture. Although 
RNNs can theoretically capture long-term dependencies, they are very hard to 
actually train to do this

● Gated recurrent units are designed in a manner to have more persistent 
memory thereby making it easier for RNNs to capture long-term dependencies

To know more: Gated Recurrent Units

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be


Long Short-Term Memory RNNs (LSTMs) 

● Long Short-Term Memory (LSTM) networks are a type of recurrent neural network 

capable of learning order dependence in sequence prediction problems.

● This is a behavior required in complex problem domains like machine translation, 

speech recognition, and more.

● LSTM networks combat the RNN's vanishing gradients or long-term dependence 

issue.

● Gradient vanishing refers to the loss of information in a neural network as 

connections recur over a longer period. In simple words, LSTM tackles gradient 

vanishing by ignoring useless data/information in the network.



Building a Recurrent Neural Network Using Keras

The code for a simple LSTM is below with an explanation following:

from keras.models import Sequential

from keras.layers import LSTM, Dense, Dropout, Masking, Embedding

model = Sequential()

# Embedding layer

model.add(

   Embedding (input_dim =num_words, input_length = training_length,           

output_dim =100, weights =[embedding_matrix],trainable =False, mask_zero =True))



# Masking layer for pre-trained embeddings

model.add(Masking(mask_value =0.0))

# Recurrent layer

model.add(LSTM(64, return_sequences =False,

              dropout =0.1, 

recurrent_dropout =0.1))

# Fully connected layer

model.add(Dense(64, activation ='relu'))

# Dropout for regularization

model.add(Dropout(0.5))

# Output layer

model.add(Dense(num_words, 

activation ='softmax' ))

# Compile the model

model.compile(

   optimizer ='adam', 

loss='categorical_crossentropy' , 

metrics=['accuracy' ])



Keras
We are using the Keras Sequential API which means we build the network up one layer at a time. The layers are as follows:

An Embedding which maps each input word to a 100-dimensional vector. The embedding can use pre-trained weights (more in a second) which we 
supply in the weights parameter. trainable can be set False if we don’t want to update the embeddings.

● A Masking layer to mask any words that do not have a pre-trained embedding which will be represented as all zeros. This layer should 

not be used when training the embeddings.

● The heart of the network: a layer of LSTM cells with dropout to prevent overfitting. Since we are only using one LSTM layer, it does not 

return the sequences, for using two or more layers, make sure to return sequences.

● A fully-connected Dense layer with relu activation. This adds additional representational capacity to the network.

● A Dropout layer to prevent overfitting to the training data.

● A Dense fully-connected output layer. This produces a probability for every word in the vocab using softmax activation.

https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/


Keras
The model is compiled with the Adam optimizer (a variant on Stochastic Gradient Descent) and trained using the categorical_crossentropy loss. 

During training, the network will try to minimize the log loss by adjusting the trainable parameters (weights). As always, the gradients of the 

parameters are calculated using back-propagation and updated with the optimizer. Since we are using Keras, we don’t have to worry about how this 

happens behind the scenes, only about setting up the network correctly.

http://neuralnetworksanddeeplearning.com/chap2.html
https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/
https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/


Generating text with an RNN Language Model

● You can train an RNN-LM on any kind of text, then generate text in that style.
● RNN-LM trained on Obama speeches:



Final Project Topics



Machine Translation / Grammar Error Correction

INPUT

I have never been to Taiwan

I never been to Taiwan

Translation

GEC

OUTPUT

我從來沒去過台灣

I have never been to Taiwan

Keywords: seq2seq models, cross-corpora analysis



Summarization / Paraphrasing

INPUT

The tower is 324 metres (1,063 ft) 
tall, about the same height as an 
81-storey building, and the tallest 
structure in Paris. Its base is square, 
measuring 125 metres (410 ft) on 
each side. It was the first structure to 
reach a height of 300 metres. 
Excluding transmitters, the Eiffel 
Tower is the second tallest 
free-standing structure in France after 
the Millau Viaduct.

OUTPUT

The tower is 324 metres (1,063 ft) tall, 
about the same height as an 81-storey 
building. It was the first structure to reach 
a height of 300 metres.

Keywords: seq2seq models



Sequence Labelling

INPUT

今天風很大把我的車吹走
了我現在很難過

I have never been to Taiwan

Adding punctuations

POS tagging

OUTPUT

CCCCC，CCCCCCC，CCCCC
C。

Pron Aux Adv V Prep Prop_N

Keywords: LSTM, CRF



Word Sense Disambiguation

Mainstream models: Masked-LM w/ nearest neighbor, contextual gloss classification  

INPUT

The underdog team "beat" 
the reigning champion.

OUTPUT

1. To defeat (someone) in a game or other 
competitive situation. 

2. ✅ To defeat (someone) in a game or other 
competitive situation. 

3. A main accent or rhythmic unit in music or 
poetry. 



Sentence Classification Models

Topics:

● Topic sentence identification (given a paragraph)
● Move structure Classification: predict sentence label given a paragraph
● Language competency level classification (e.g. Levels 1~5)

A popular topic in classification is natural language inference (NLI). You may start with this 
keyword and see if other people’s methods are useful for your task.

Note: NO sentiment analysis



Useful Tools

Tensorflow (often used with Keras)

Pytorch

Huggingface🤗
Scikit-learn

https://www.tensorflow.org/tutorials
https://keras.io/getting_started/
https://pytorch.org/tutorials/beginner/basics/intro.html
https://huggingface.co/
https://scikit-learn.org/stable/


Important Dates 

● Submit your group and chosen topic here: 11/10, before 23:59
● Topic Proposal: 11/17, in class
● Proposal slides due: 11/20, before 23:59
● Progress check: 12/1 or 12/8 (same order as your final presentation), in class
● Final presentation: 12/29 or 1/5, in class
● Project due: 1/12, before 23:59

https://docs.google.com/spreadsheets/u/9/d/1z6-Kccn-sXDZGNVhlMn2hcEv_D0f5zAF9xk-zTzJDbA/edit

